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Phase diagram of the spin-32 Blume-Capel model in three dimensions
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We use a thermodynamically self-consistent theory to obtain the phase diagram of the ferromagnetic spin-3
2

Blume-Capel model on the simple cubic lattice. The theory is based on an Ornstein-Zernike approximation
where the direct correlation function is truncated and the dependence upon the thermodynamic variables is
determined by a set of two coupled partial differential equations. Within this framework, we localize the
critical line in zero external field with high accuracy and in good agreement with previous Monte Carlo
analysis. At low temperature, in contrast with Monte Carlo results, we find a first-order transition line ending
at a critical end point whose coordinates are given by (kBTc /Jc50.21360.003,Dc /Jc50.49160.001).

DOI: 10.1103/PhysRevE.65.056130 PACS number~s!: 64.60.2i, 64.10.1h
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I. INTRODUCTION

The spin-S Blume-Capel model is a generalization of th
Ising model and is defined by the Hamiltonian

H52J(̂
i j &

sisj1D(
i

si
22h(

i
si , ~1!

wheresi52S,2S11, . . . ,S is the spin variable at each sit
of a d-dimensional lattice and the first term sums over
nearest-neighbor pairs. The constantJ.0 defines the ferro-
magnetic exchange coupling,D is a single spin anisotropy
parameter andh is an external field.

In the case whereS51, the Hamiltonian~1! defines the
Blume-Capel model@1# and is a special case of the Blum
Emery-Griffiths ~BEG! Hamiltonian @2#, HBEG5H
2K(^ i j &si

2sj
2 , which represents a variety of interestin

physical systems, in particular,3He-4He mixtures. TheS
51 model has played an important role in the developm
of tricritical phenomena@3# and has been studied by a varie
of methods such as the original mean-field treatment@1#,
series expansions@4#, renormalization-group calculation
@5,6#, cluster-variation method@7#, and Monte Carlo simula-
tions @8#. The phase diagram of the Blume-Capel mode
now well known and has been determined precisely for
mensionsd>2. It presents a line of second-order transitio
~the so-calledl line! that separates the ferromagnetic o
dered phase from the paramagnetic disordered phase.
transition line changes from second-order to first-order tr
sitions at a tricritical point. Recently, two nonperturbati
approaches, one based on a thermodynamically s
consistent theory@9# and the other one based on the mome
tum renormalization-group technique@10#, have permitted to
locate the coexistence curve in three dimensions with h
accuracy, as well as the whole structure of the phase diag
including the ‘‘wing’’ boundaries in nonzero external fie
@9#.

In the case whereS5 3
2 , the model is a four-state spi

model. Such models with additional terms in the Ham
tonian have been initially introduced to give a qualitati
description of phase transitions observed in the compo
DyVO4 @11# and also to describe ternary mixtures@12#. In
contrast to the caseS51, the phase diagram of theS5 3

2

Blume-Capel is not well known and there are contradictio
1063-651X/2002/65~5!/056130~6!/$20.00 65 0561
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among the available results. The mean-field treatment@13#
that has been performed for the general Hamiltonian Eq.~1!
predicts that the phase diagram differs for integer or h
odd-integer spins. More specifically, forS5 3

2 , the mean-field
calculation indicates a line of second-order transitions
any value ofD without the existence of a multicritical point
but with a line of first-order transitions at low temperatu
that ends up in an isolated critical end point. The resu
obtained for the phase diagram of theS5 3

2 model in two
dimensions have yielded to successive various conclusi
Whereas renormalization-group calculations@6,14# sug-
gested the existence of a multicritical point, a recent stu
based on transfer matrix and conformal invariance@15#
shows that there is no multicritical point in the phase d
gram. In three dimensions, Monte Carlo simulations@16# for
the simple cubic lattice suggest that the first-order transit
line reaches the critical line, implying the existence of a m
ticritical point. Bethe-Peierls@17# and two-spin-cluster ap
proximations@18# have been performed but neither of the
studies explores the low-temperature region. On the o
hand, a recent study obtained in the framework of two-sp
cluster approximation @19# that investigates the low
temperature region indicates a phase diagram in qualita
agreement with the mean-field prediction. However, this
proach, as well as the mean-field analysis, overestimates
critical temperatures and does not locate the critical line w
the same accuracy as the Monte Carlo predictions. In
context, one still needs an accurate and correct descriptio
the phase diagram in three dimensions. The purpose of
paper is to study theS5 3

2 Blume-Capel model using a ther
modynamically self-consistent approach and to give a c
cut answer concerning the existence and the location o
critical end point. We believe that the phase diagram
tained in this study is the most precise in the present lite
ture.

The approach used in this study is a self-consist
Ornstein-Zernike approximation~SCOZA! that has been in-
troduced originally by Hoye and Stell@20# as a method for
obtaining the thermodynamic and structural properties
simple fluids. This theory has then been developed
solved to study the lattice-gas model with nearest-neigh
attractive interactions@21# and more recently the Blume
Capel model@9#. Both studies show that this approach giv
a very accurate description of the structural and thermo
©2002 The American Physical Society30-1
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S. GROLLAU PHYSICAL REVIEW E 65 056130
namic quantities even in the near vicinity of a critical poin
yielding effective exponents close to the exact values. T
transition temperature for second-order as well as first-o
transition ~see also the study of the Potts model@22#! are
obtained with high accuracy compared to the best availa
estimates. This approach is based on the assumption tha
direct correlation functionC(r ) that is related to the two
particle distribution functionG(r ) via the Ornstein-Zernike
equation has always the same range as the pair potentia
the case of the lattice gas, the dependence on the therm
namic variables givingC(r ) uniquely is determined firs
from a partial differential equation, which ensures that
same free energy is obtained from fluctuation theory or
so-called compressibility route and from integration of t
internal energy with respect to the inverse temperature,
second from the requirement of single site occupancy. In
case of the Blume-Capel model,C(r ) is obtained as the so
lution of two coupled partial differential equations that e
sure the thermodynamical self-consistency. The paper is
ganized as follows. In Sec. II, we present the theory for
S5 3

2 Blume-Capel model. In Sec. III, we give the pha
diagram in zero external field and we compare our res
with previous analyses.

II. THEORY

Our theory is based on an Ornstein-Zernike approxim
tion for the direct correlation functionCi j , whereCi j is re-
lated to the connected pair correlation functionGi j 5^SiSj&
2^Si&^Sj& via the Ornstein-Zernike~OZ! equations

(
k

GikCk j5d i j , ~2!

where d i j is the Kronecker symbol. The OZ equation is
consequence of the Legendre transform

G~T,D,$mi%!5F~T,D,$hi%!1(
i

himi ~3!

that defines the Gibbs free energyG from the free energyF
52kBT ln Tr exp@2H/kBT#. The free energyF is a function
of the inverse temperatureb51/kBT, the single spin anisot
ropy parameterD and the site dependent magnetic fieldhi ,
whereas the Gibbs free energyG is a function ofb, D and
the local magnetizationmi . The connected and direct corre
lation functions are obtained as the second derivatives oF
andG with respect to the local field and local magnetizati

Gi j 52
]2F̃

]h̃i]h̃ j

, ~4!

Ci j 5
]2G̃

]mi]mj
, ~5!

where F̃5bF, G̃5bG, and h̃i5bhi . In the case of a uni-
form magnetic fieldhi5h ~or equivalently formi5m), the
system is translationally invariant and the correlation fu
05613
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tions C(r ) and G(r ) depend only on the vectorr that con-
nects the two sites. In general, the direct correlation funct
C(r ) is expected to remain of finite range, even at the criti
point @23#. Following the OZ approximation, we assume he
thatC(r ) has exactly the range of the exchange interaction
the Hamiltonian Eq.~1!. This assumption implies thatC(r ) is
truncated at nearest-neighbor~NN! separation and we thu
write

C~r !5c0~ J̃,D̃,m!d r ,01c1~ J̃,D̃,m!d r ,e ~6!

wheree denotes a vector from the origin to one of its NN,c0
and c1 are two arbitrary functions that depend on the th
modynamic variablesJ̃5bJ, D̃5bD, and m. As is well
known in liquid-state theory@23#, when one assumes som
approximate but explicit dependence of the direct correlat
function upon the thermodynamic variables, as in the rand
phase approximation or in the mean-spherical approxim
tion, the theory is in general thermodynamically inconsiste
In our self-consistent approach, the assumption Eq.~6! is the
only approximation of the theory and the two functionsc0
andc1 are determined by imposing the thermodynamic co
sistency, as explained below.

One consequence of the assumption Eq.~6! is that the
two-point correlation function is given by

G~r !5
1

c0
P~r ,z!, ~7!

where

P~r ,z!5
1

~2p!dE2p

p

dk
e2 ik•r

12zl̂~k!
~8!

is the lattice Green’s function. In the Eqs.~7! and ~8!, we
have introduced the characteristic function of the latt
l(k)5(1/c)(ee

ik•e and we have substituted the unknow
function c1 with the new onez52(c1 /c0)c, wherec is the
coordination number. The expression Eq.~7! of G(r ) implies
that the exponenth giving the asymptotic behavior ofG(r )
at the critical point@G(r );C/r d221h# is equal to zero.
However, an important feature of the SCOZA is that t
other exponents do not take necessarily classical or sphe
values. In particular, the spontaneous magnetization for
Ising model is accurately described with the exponentb
50.35 @24# ~see also Refs.@9# and@21# for the critical prop-
erties of SCOZA!.

In a previous work, the SCOZA equations have been
rived for the Blume-Capel model@9#. In that case, thermo
dynamic consistency is encoded in two partial different
equations. These two equations@Eqs.~16a! and~16b! of that
reference# are in fact valid for the most general Hamiltonia
Eq. ~1!. To derive these equations, one considers the cha
in the free energy associated with infinitesimal changes inJ̃,
D̃, andh̃:

dF̃52d J̃(̂
i j &

^SiSj&1dD̃(
i

^Si
2&2dh̃(

i
^Si&. ~9!
0-2
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PHASE DIAGRAM OF THE SPIN-32 BLUME-CAPEL . . . PHYSICAL REVIEW E 65 056130
In terms of the pair-correlation function, the correspond
change in the Gibbs free energy is given by

dG̃/N52 1
2 @G~r5e!1m2#dl1@G~r50!1m2#dD̃1h̃dm,

~10!

whereN is the number of lattice sites andl5cJ̃.
For the theory to be thermodynamically consistent,

Gibbs potentialG̃ must have the same value when integrat
with respect tol, D̃, or m. This thermodynamic consistenc
is embodied in two independent Maxwell relations betwe
the partial derivatives ofG̃ with respect to the control vari
ables~see@9# for a detailed derivation of these equations!:

]Ĉ~k50!

]l
52

1

2

]2

]m2
@G~r5e!1m2#, ~11!

]G~r50!

]l
52

1

2

]G~r5e!

]D̃
. ~12!

Using the expression of the correlation functions, Eqs.~6!
and ~7!, one obtains the two SCOZA equations

]

]l
c0~12z!5212

1

2

]2

]m2

P~z!21

zc0
, ~13!

]

]l

P~z!

c0
5

1

2
t~12t!

]

]t

P~z!21

zc0
, ~14!

where t5(11 1
2 eD̃)21 varies from 0 to 1 andP(z)

5P(z,rÄ0). Finally, for the theory to be completely define
one has to determine the appropriate boundary conditions
the solution to the Eqs.~13! and ~14!.

The full range of variation of the inverse temperaturel is
from 0 to ` and that of the magnetizationm goes from
2 3

2 to 3
2 ~because of the symmetrym→2m, one can restrict

the domain tom>0). l50 corresponds to the initial cond
tion provided by the exact solution of the noninteracti
model in an external field. For this system, the correlat
functions are nonzero only atrÄ0 that implies thatz50.
From the spontaneous magnetization

FIG. 1. SCOZA spinodal surface in the (T-t-m) space.
05613
g

e

n
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n

m5
1

2

~x21!~3x21x~31u!13!

~x11!~x21x~u21!11!
, ~15!

wherex5eh̃ andu54(12t)2/t2, one obtains

c05Ĉ~k50!5
]2G̃/N

]m2
5~kBTx21!

5
~11x!2@x21x~u21!11#2

x@ux414ux31x2~u219!14ux1u#
. ~16!

The boundary conditionm5 3
2 corresponds also to a trivia

system where in that case all the spins are in theS5 3
2 state.

For m5 3
2 , one hasz50, and G(rÄ0)5 9

4 2m25P(z)/c0
implies thatP(z)/c050 ~or c0→`).

Finally, one has to determine the functionsz and c0 for
t51 andt50. Insertingt51 in Eq. ~14! leads to the fact
that P(z)/c05 f (m) is a function ofm independent ofl.

FIG. 2. Detail of the spinodal surface in the region 0.28<t
<0.

FIG. 3. Critical line in zero external field. The SCOZA resul
are compared those obtained with the mean-field approxima
~MFA! @13#, the cluster expansion method~CEM! @19# and Monte
Carlo simulation~MC! @16#.
0-3
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FIG. 4. Spontaneous magnetization~dashed lines! and spinodal curves~full lines! vs temperature fort50.20 ~a!, t50.17 ~b!, andt
50.16 ~c!.
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This function f (m) may be determined for the system wit
out interaction,l50. By insertingt51 in Eq. ~16!, one
obtainsf (m)5 9

4 2m2. The equation for the remaining var
ablez(l,m) becomes

1
9
4 2m2

]

]l
~12z!P~z!5212

1

2

]2

]m2 F S 9

4
2m2D P~z!21

zP~z! G ,
~17!

which is nothing else that the SCOZA equation for the Is
model where the spins assume the values6 3

2 . Indeed, the
boundary conditiont51 corresponds to the limitD→2`
where in that case all the statesS56 1

2 are suppressed.
One obtains in a similar way the boundary condition

t50. In that case, the variablez(l,m) is determined by the
solution of the equation
05613
r

1

f ~m!

]

]l
~12z!P~z!5212

1

2

]2

]m2 F f ~m!
P~z!21

zP~z! G ,
~18!

where f (m)5 1
4 2m2 for 0<m< 1

2 and f (m)5(m2 1
2 )( 3

2

2m) for m> 1
2 . t50 corresponds to the limitD→1`. In

this limit and for a finite external fieldh, the statesS56 3
2

are suppressed and the solution of Eq.~18! on the domain
0<m< 1

2 corresponds to the SCOZA equation for theS
56 1

2 Ising model. On the other hand, for an infinite extern
field, the statesS56 3

2 may be populated. The solution o
Eq. ~18! on the domain1

2 <m< 3
2 corresponds to this limit

h→1`. In particular, it gives the location of the critica
point marking the end of the wing critical line~this critical
wing is the critical line that separates the two phases wh
either theS5 1

2 or theS5 3
2 spin states are populated!.

Thus, Eqs.~13! and~14! with the above boundary condi
tions define the SCOZA theory for theS5 3

2 Blume-Capel
0-4
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PHASE DIAGRAM OF THE SPIN-32 BLUME-CAPEL . . . PHYSICAL REVIEW E 65 056130
model. We have performed the numerical resolution of th
equations,~13! and ~14!, with an explicit algorithm where
the partial derivatives are approximated by finite differen
representations. From the initial conditionl50, the finite
representation of Eqs.~14! and ~15! gives the functionsc0
andz at the next step in thel direction,l5dl. Oncec0 and
z are known at the inverse temperaturel, the same procedur
is repeated to obtainc0 and z at the new stepl1dl. To
ensure the numerical stability of the explicit scheme,dl is
gradually decreased as the spinodal is approached, the
odal being defined by the divergence of the susceptib
kBTx. The shape and the localization of the spinodal is
known a priori but given by the numerical resolution and
defines the lower bound of the domain of definition of t
Eqs. ~13! and ~14!. During the numerical procedure, we in
tegrate the Gibbs free energy

G̃
N

~l,D̃,m!5E
0

l

2
1

2
@G~r5e!1m2#dl1

G̃
N

~l50,D̃,m!,

~19!

where G(rÄe)5(12m2)@P(z)21/zP(z)# and G̃(l
50,D̃,m) is the Gibbs free energy for the system witho
interaction. In the following section, we present the resu
obtained for the phase diagram in zero external field,h50.
In the disordered phase, the zero field solution is given
the Gibbs free energy atm50 whereas in the ordered phas
the zero field solution and in particular the spontane
magnetization is obtained from the conditionh(T,m)
5(]G)/(]m)50.

III. RESULTS AND DISCUSSION

We have performed the numerical resolution for t
simple cubic lattice using the corresponding integral expr
sion of the lattice Green’s function@25#.

The global shape of the spinodal in space (T,m,t) and the
details for small values oft are depicted in Figs. 1 and 2
respectively. For a fixed value oft, the spinodal in theT-m
plane presents a maximum atm50. This maximum corre-
sponds to a critical point in zero external field. For sm
value oft, the spinodal in theT-m plane presents three dis
tinct maxima. The two symmetric maxima with respect to t
planem50 correspond to the two critical points in extern
field ~points of the two symmetrical critical wings!.

The critical line in zero external field is represented in F
3 in the T-D plane. We obtain the critical temperatures f
the S56 3

2 (t51) and for theS56 1
2 (t50) Ising model,

9J̃c50.884 89 andJ̃c50.884 78, respectively. These valu
are in perfect agreement with that obtained in Ref.@21# and
they are within 0.2% of the best estimate for the Ising mo
~see@21# and references therein!. We believe that the SCOZA
predictions for the critical temperatures in the whole range
the values of the crystal fieldD are obtained with the sam
accuracy as the one obtained for the two limitst50 andt
51. We have reported on the Fig 3 the results obtained w
the mean-field approximation~MFA! @13#, with a cluster ex-
pansion method~CEM! @19# and results from Monte Carlo
05613
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simulations~MC! @16#. This comparison shows how the e
timates of the critical temperature decrease when the ef
of fluctuations is taken into account. The CEM gives a s
nificant correction to the mean-field prediction and SCO
brings additional corrections yielding a very good agreem
with the Monte Carlo predictions.

We have calculated the spontaneous magnetization cu
for several values oft. In Fig. 4, the spinodal and the spon
taneous magnetization curves are represented in the p
T-m for three values oft, t50.20, t50.17, andt50.16.
We observe that fort50.20, the spontaneous magnetizati
decreases continuously as the temperature decreases, w
curve located well above the spinodal curve. Fort50.17, the
spontaneous magnetization curve is still continuous, but
comes close to the spinodal curve for a nonzero value of
magnetization. Fort50.16, the spontaneous magnetizati
curve presents a discontinuity at the temperaturekBT/Jc
'0.21. This discontinuity corresponds to the first-order tra
sition at low temperature. Between the two valuest50.16
andt50.17, there is a critical valuetc for which the spon-
taneous magnetization is tangent to the spinodal at a non
value ofm. This valuetc corresponds to the critical value o
the coordinates of the critical end point marking the end
the first-order transition line. To obtain more precisely t
coordinates of the critical end point, we decrease the m
division of the grid in the numerical procedure. We thus ha
found that the coordinates of the critical end point a
kBTc /Jc50.213(3), Dc /Jc50.491(1), and tc50.167(5).
This value ofDc /Jc is close to the CEM value (Dc

CEM/Jc
.0.49225) whereas the mean-field value is slightly low
(Dc

MFA/Jc.0.486). These two methods however overes
mate significantly the critical temperature withkBTc

MFA/Jc
.0.3 andkBTc

CEM/Jc.0.2327.

FIG. 5. Phase diagram in the neighborhood of the critical e
point. Monte Carlo~MC! results suggest a first-order transition lin
reaching the critical line. The SCOZA results give a critical e
point ~small circle!.
0-5
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S. GROLLAU PHYSICAL REVIEW E 65 056130
Finally, the critical line and the first-order transition lin
in the neighborhood of the critical end point are depicted
Fig. 5 in theT-D plane. We have reported on this figure t
MC results. The SCOZA predictions give a critical end po
very close to but below the critical line. The phase diagram
thus in qualitative agreement with the mean-field predictio
The agreement between the SCOZA and the simulation
very good for the whole phase diagram including the criti
line as well as the first-order one. However, the simulatio
indicate a point of first-order transition that suggests that
first-order transition line reaches the critical one. Accord
to the accuracy of the SCOZA to locate first-order as wel
second-order transition, we believe that the SCOZA gives
correct phase diagram. The first-order transition line ends
in an isolated critical point and there is no multicritical poi
in the phase diagram of the three-dimensionalS5 3

2 Blume-
Capel model.

IV. CONCLUSION
In this paper, we have obtained the phase diagram of

three-dimensionalS5 3
2 Blume-Capel model using a thermo
l

,

s.
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dynamically self-consistent theory. This approach allows
to locate first-order and second-order transitions with h
accuracy. The critical line as well as the first-order transit
line compared very well with the Monte Carlo prediction
Besides, different from the Monte Carlo results, the SCO
is accurate enough to obtain the coordinates of the crit
end point that terminates the first-order transition line a
that is located just below the critical line. We thus obtain
phase diagram in qualitative agreement with the mean-fi
prediction. This work as well as previous studies show t
the SCOZA is a powerful tool to study three dimension
spin model and that the predictions for nonuniversal qua
ties such as the critical temperatures can be considere
faithful estimates.
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